分析

まずはやってみよう!マーケティングでデータ分析!①イントロダクション

まずは自社でデータ分析をやるべき

データ分析を会社で活かせていますか?

様々な会社とデータ分析の取り組みをすればするほど、その実情には厳しいものがあることを肌で感じられます。

もちろんデータ分析を気軽に依頼できる余裕が十分にあるならば、分析できる会社に依頼するのもいいでしょう。

しかし、それにはそれなりの大きなコストが掛ります。

データ分析というのは、「やってみないとわからない」、「コストがかかる」という性質をもっているのです。

弊社でも、「やってみないとわからない」を解消するため、毎度取り組みが始まる前に徹底的に「何のためのデータ分析か」について、ゴールのすり合わせをします。

ですが、データ分析の経験がないと、その成果物イメージやそのプロセスに納得感をもつのは容易ではなく、投資に踏み切れず頓挫するということも少なくありません。

分析の取り組みを台無しにしないためにも、データ分析や、データ分析でできることに関して、自分たちの「ものさし」を持っておくに越したことはありません。

マーケティングはデータ分析が始めやすい

ここに、データ活用における「課題」について、次のような調査結果があります。

出典 企業におけるデータ活用の取り組み動向調査
~「データ活用人材やリソースの調達・増強」 その3割が“効果なし”~
株式会社NTTデータ経営研究所 (2020.05.13)

実際にみなさんの課題はどれに該当しますか?

いろいろ課題はありつつも、マーケティングをテーマにした場合、実行しやすい環境が、みなさんの周りに、ある程度揃っているのではないかと、私は想像しています。

例えば マーケティングは

  • 目的が明確
  • 昔から様々なノウハウが蓄積されており膨大な書籍やWEBドキュメントにアクセス可能
  • 様々なCRMやMAツールを通じてデータを利用可能
  • 成果物のイメージやノウハウが身近に感じられる
  • 常に改善策が求められ、結果を数値的に振り返って継続的な取り組みに発展させやすい

いかがですか?

そこで、この連載では、みなさんの分析したいキモチを阻む課題に向き合いながら

データ分析×マーケティングにフォーカスを当てていくことにしました。

章構成は次のようになります。

①イントロダクション
②必要なデータと基礎集計
③顧客分析
④商品分析
⑤アクション設計と効果検証
⑥さらに価値を見出すデータ分析

次回からは、マーケティングにおけるデータ分析の流れの一例を紹介していきます。

連載を通じて「みなさんの”まずやってみよう”の後押し」につながれば幸いです。

さきがけKPI

ピックアップ記事

  1. 優良顧客を見つける「RFM分析」の考え方と使い方
  2. 多くの人と会話をするきっかけとなる最適な映画をデータサイエンスで選んでみた
  3. 学生をデータサイエンティストに育てる4つのポイント
  4. 知っておきたいAIの理想と現実
  5. こんなときには異常検知

関連記事

  1. 分析

    サブスクリプションの利用継続KPIをロジステック回帰分析で明らかに!

    本記事ではロジスティック回帰分析でできることと、効能について、具体的な…

  2. 分析

    かんたん解説! ロジスティック回帰の結果の見方と考え方

     統計学の心得が無いビジネスマンにも、分析結果の読み方が理解できれば、…

  3. 分析

    今からとる行動が及ぼす影響の大きさを、数値で予測してくれる「回帰分析」のお話し

    経営判断や、次のアクションを決める必要があるときに、「どんな要素が」「…

  4. 分析

    まずはやってみよう!マーケティングでデータ分析!③顧客分析

    前章では、目的の数字に関する基礎集計をしました。これによって、今後の目…

  5. 分析

    レコメンドのために効果的な商品分析!バスケット分析とは

    「顧客の購買商品に合わせて顧客育成をしたい」「利益効率を高めるため一度…

  6. 分析

    マーケティングから不正検知まで、データの理解と意思決定を助けてくれる「クラスタリング」とは?

    クラスタという言葉そのものには聞き覚えがあるかもしれません。で…

カテゴリー

おすすめ記事

  1. 確率を予測する「ロジスティック回帰」とは
  2. データサイエンスを現場の敵にしないために
  3. 優良顧客を見つける「RFM分析」の考え方と使い方
  4. 箱ひげ図 について超カンタンに解説してみた
  5. 知っておきたいAIの理想と現実
  1. topics

    大阪のホテル相場は1泊4500円。条件の違いで相場がどれだけ変わるのか見える化し…
  2. 統計

    箱ひげ図 について超カンタンに解説してみた
  3. 統計

    なんでも平均でいいの?
  4. 最適化

    おせちで説明!ヒトの経験と勘を超える「数理最適化」の可能性
  5. 統計

    2種のデータの関係性を明らかにする「相関」のおはなし
PAGE TOP