インターン生募集 未来のゲームチェンジャーの「やってみよう」をカタチに!データサイエンスのかっこでインターン生募集中

分析

まずはやってみよう!マーケティングでデータ分析!①イントロダクション

まずは自社でデータ分析をやるべき

データ分析を会社で活かせていますか?

様々な会社とデータ分析の取り組みをすればするほど、その実情には厳しいものがあることを肌で感じられます。

もちろんデータ分析を気軽に依頼できる余裕が十分にあるならば、分析できる会社に依頼するのもいいでしょう。

しかし、それにはそれなりの大きなコストが掛ります。

データ分析というのは、「やってみないとわからない」、「コストがかかる」という性質をもっているのです。

弊社でも、「やってみないとわからない」を解消するため、毎度取り組みが始まる前に徹底的に「何のためのデータ分析か」について、ゴールのすり合わせをします。

ですが、データ分析の経験がないと、その成果物イメージやそのプロセスに納得感をもつのは容易ではなく、投資に踏み切れず頓挫するということも少なくありません。

分析の取り組みを台無しにしないためにも、データ分析や、データ分析でできることに関して、自分たちの「ものさし」を持っておくに越したことはありません。

マーケティングはデータ分析が始めやすい

ここに、データ活用における「課題」について、次のような調査結果があります。

出典 企業におけるデータ活用の取り組み動向調査
~「データ活用人材やリソースの調達・増強」 その3割が“効果なし”~
株式会社NTTデータ経営研究所 (2020.05.13)

実際にみなさんの課題はどれに該当しますか?

いろいろ課題はありつつも、マーケティングをテーマにした場合、実行しやすい環境が、みなさんの周りに、ある程度揃っているのではないかと、私は想像しています。

例えば マーケティングは

  • 目的が明確
  • 昔から様々なノウハウが蓄積されており膨大な書籍やWEBドキュメントにアクセス可能
  • 様々なCRMやMAツールを通じてデータを利用可能
  • 成果物のイメージやノウハウが身近に感じられる
  • 常に改善策が求められ、結果を数値的に振り返って継続的な取り組みに発展させやすい

いかがですか?

そこで、この連載では、みなさんの分析したいキモチを阻む課題に向き合いながら

データ分析×マーケティングにフォーカスを当てていくことにしました。

章構成は次のようになります。

①イントロダクション
②必要なデータと基礎集計
③顧客分析
④商品分析
⑤アクション設計と効果検証
⑥さらに価値を見出すデータ分析

次回からは、マーケティングにおけるデータ分析の流れの一例を紹介していきます。

連載を通じて「みなさんの”まずやってみよう”の後押し」につながれば幸いです。

さきがけKPI

ピックアップ記事

  1. 知っておきたいAIの理想と現実
  2. RFM分析とは?優良顧客を見つけるやり方やメリット【例を用いて解説】
  3. 多くの人と会話をするきっかけとなる最適な映画をデータサイエンスで選んでみた
  4. こんなときには異常検知
  5. 学生をデータサイエンティストに育てる4つのポイント

関連記事

  1. リピート率とはのアイキャッチ画像

    分析

    売上に直結するリピート率とは?計算方法や上げ方の手順を解説

    「リピート率ってなに?」「そもそもなんでリピート率が重要?…

  2. 分析

    サブスクリプションの利用継続KPIをロジステック回帰分析で明らかに!

    本記事ではロジスティック回帰分析でできることと、効能について、具体的な…

  3. 新宿 バイト 時給

    分析

    新宿区でバイトを募集する企業向けに、 参考時給を提⽰し時給の決定を⽀援する

    「新宿でバイトの募集をしたいけど、時給はいくらに設定すべき?」「新…

  4. 売上データ分析

    分析

    売上UPにはデータ分析が不可欠?5つの売上分析の手法と分析の流れをご紹介!

    「売上データがあっても複雑そうでどう活用すれば...」、「売上分析の正…

  5. 分析

    マーケティングから不正検知まで、データの理解と意思決定を助けてくれる「クラスタリング」とは?

    クラスタという言葉そのものには聞き覚えがあるかもしれません。で…

  6. 分析

    まずはやってみよう!マーケティングでデータ分析!②必要なデータと基礎集計

    必要なデータは5つだけ!早速、今回の記事からマーケティングでデータ…

おすすめ記事

  1. 就活で話すことには困らないかっこのインターンシップ経験!
  2. 日々、巧妙化する不正取引の対策頻度を10倍に向上!「異常検知…
  3. 全力で食らいついたかっこでの1年間
  4. 確率を予測する「ロジスティック回帰」とは
  5. データサイエンスを現場の敵にしないために
  1. 統計

    データ分析の成果を大きく左右する「変数」って何だ?
  2. 2024年問題 とは

    組織

    2024年問題とは?物流業界への影響や解決策を分かりやすく解説!
  3. なんでも平均でいいの?

    統計

    なんでも平均でいいの?中央値と平均値をどう使い分けるか
  4. インターン体験記

    未経験でも、データ分析の実践経験を積めた!在宅インターンシップ
  5. インターン体験記

    データサイエンスの知識をデジタルマーケティング実務で実践! 進路も変えたインター…
PAGE TOP